Variant
A VARIANT can store a value of any other type, including NULL, BOOLEAN, NUMBER, STRING, ARRAY, and OBJECT, and the internal value can be any level of nested structure, which is very flexible to store various data. VARIANT can also be called JSON, for more information, please refer to JSON website.
Here's an example of inserting and querying Variant data in Databend:
Create a table:
CREATE TABLE customer_orders(id INT64, order_data VARIANT);
Insert a value with different type into the table:
INSERT INTO
customer_orders
VALUES
(
1,
'{"customer_id": 123, "order_id": 1001, "items": [{"name": "Shoes", "price": 59.99}, {"name": "T-shirt", "price": 19.99}]}'
),
(
2,
'{"customer_id": 456, "order_id": 1002, "items": [{"name": "Backpack", "price": 79.99}, {"name": "Socks", "price": 4.99}]}'
),
(
3,
'{"customer_id": 123, "order_id": 1003, "items": [{"name": "Shoes", "price": 59.99}, {"name": "Socks", "price": 4.99}]}'
);
Query the result:
SELECT * FROM customer_orders;
Result:
┌─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ id │ order_data │
├─────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ 1 │ {"customer_id":123,"items":[{"name":"Shoes","price":59.99},{"name":"T-shirt","price":19.99}],"order_id":1001} │
│ 2 │ {"customer_id":456,"items":[{"name":"Backpack","price":79.99},{"name":"Socks","price":4.99}],"order_id":1002} │
│ 3 │ {"customer_id":123,"items":[{"name":"Shoes","price":59.99},{"name":"Socks","price":4.99}],"order_id":1003} │
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
Accessing Elements in JSON
Accessing by Index
The VARIANT type contains an array, which is a zero-based array like many other programming languages. Each element within the array is also of the VARIANT type. Elements can be accessed by their index using square brackets.
Example
Create a table:
-- Create a table to store user hobbies
CREATE TABLE user_hobbies(user_id INT64, hobbies VARIANT NULL);
Insert sample data into the table:
INSERT INTO user_hobbies
VALUES
(1, '["Cooking", "Reading", "Cycling"]'),
(2, '["Photography", "Travel", "Swimming"]');
Retrieve the first hobby for each user:
SELECT
user_id,
hobbies [0] AS first_hobby
FROM
user_hobbies;
Result:
┌─────────────────────────────────────┐
│ user_id │ first_hobby │
├─────────────────┼───────────────────┤
│ 1 │ "Cooking" │
│ 2 │ "Photography" │
└─────────────────────────────────────┘
Retrieve the third hobby for each user:
SELECT
hobbies [2],
count() AS third_hobby
FROM
user_hobbies
GROUP BY
hobbies [2];
Result:
┌─────────────────────────────────┐
│ hobbies[2] │ third_hobby │
├───────────────────┼─────────────┤
│ "Swimming" │ 1 │
│ "Cycling" │ 1 │
└─────────────────────────────────┘
Retrieve hobbies with a group by:
SELECT
hobbies [2],
count() AS third_hobby
FROM
user_hobbies
GROUP BY
hobbies [2];
Result:
┌────────────┬─────────────┐
│ hobbies[2] │ third_hobby │
├────────────┼─────────────┤
│ "Cycling" │ 1 │
│ "Swimming" │ 1 │
└────────────┴─────────────┘
Accessing by Field Name
The VARIANT type contains key-value pairs represented as objects, where each key is a VARCHAR and each value is a VARIANT. It functions similarly to a "dictionary," "hash," or "map" in other programming languages. Values can be accessed by the field name using either square brackets or colons, as well as dots for the 2nd level and deeper only (Dots cannot be used as a first-level name notation to avoid confusion with dot notation between table and column).
Example
Create a table to store user preferences with VARIANT type:
CREATE TABLE user_preferences(
user_id INT64,
preferences VARIANT NULL,
profile Tuple(name STRING, age INT)
);
Insert sample data into the table:
INSERT INTO
user_preferences
VALUES
(
1,
'{"settings":{"color":"red", "fontSize":16, "theme":"dark"}}',
('Amy', 12)
),
(
2,
'{"settings":{"color":"blue", "fontSize":14, "theme":"light"}}',
('Bob', 11)
);
Retrieve the preferred color for each user:
SELECT
preferences['settings']['color'],
preferences['settings']:color,
preferences['settings'].color,
preferences:settings['color'],
preferences:settings:color,
preferences:settings.color
FROM
user_preferences;
Result:
┌────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ preferences['settings']['color'] │ preferences['settings']:color │ preferences['settings']:color │ preferences:settings['color'] │ preferences:settings:color │ preferences:settings:color │
├──────────────────────────────────┼───────────────────────────────┼───────────────────────────────┼───────────────────────────────┼────────────────────────────┼────────────────────────────┤
│ "red" │ "red" │ "red" │ "red" │ "red" │ "red" │
│ "blue" │ "blue" │ "blue" │ "blue" │ "blue" │ "blue" │
└────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
Please note that field names are case-sensitive. If a field name contains spaces or special characters, enclose it in double quotes.
INSERT INTO
user_preferences
VALUES
(
3,
'{"new settings":{"color":"red", "fontSize":16, "theme":"dark"}}',
('Cole', 13)
);
-- Double-quote the field name "new settings"
SELECT preferences:"new settings":color
FROM user_preferences;
┌──────────────────────────────────┐
│ preferences:"new settings":color │
├──────────────────────────────────┤
│ NULL │
│ NULL │
│ "red" │
└──────────────────────────────────┘
-- No results are returned when 'c' in 'color' is capitalized
SELECT preferences:"new settings":Color
FROM user_preferences;
┌────────────────── ────────────────┐
│ preferences:"new settings":color │
│ Nullable(Variant) │
├──────────────────────────────────┤
│ NULL │
│ NULL │
│ NULL │
└──────────────────────────────────┘
Data Type Conversion
By default, elements retrieved from a VARIANT column are returned. To convert a returned element to a specific type, add the ::
operator and the target data type (e.g. expression::type).
Create a table to store user preferences with a VARIANT column:
CREATE TABLE user_pref(user_id INT64, pref VARIANT NULL);
Insert sample data into the table:
INSERT INTO user_pref
VALUES
(1, parse_json('{"age": 25, "isPremium": "true", "lastActive": "2023-04-10"}')),
(2, parse_json('{"age": 30, "isPremium": "false", "lastActive": "2023-03-15"}'));
Convert the age to an INT64:
SELECT user_id, pref:age::INT64 as age FROM user_pref;
Result:
┌─────────┬─────┐
│ user_id │ age │
├─────────┼─────┤
│ 1 │ 25 │
│ 2 │ 30 │
└─────────┴─────┘
JSON Functions
See Variant Functions.