Skip to main content

REPLACE

Introduced: v1.1.55

REPLACE INTO can either insert multiple new rows into a table or update existing rows if those rows already exist, using the following sources of data:

  • Direct values

  • Query results

  • Staged files: Databend enables you to replace data into a table from staged files with the REPLACE INTO statement. This is achieved through Databend's capacity to Query Staged Files and subsequently incorporate the query result into the table.

atomic operations

Databend ensures data integrity with atomic operations. Inserts, updates, replaces, and deletes either succeed completely or fail entirely.

Syntax

REPLACE INTO <table_name> [ ( <col_name> [ , ... ] ) ]
ON (<CONFLICT KEY>) ...

REPLACE INTO updates existing rows when the specified conflict key is found in the table and inserts new rows if the conflict key is not present. The conflict key is a column or combination of columns in a table that uniquely identifies a row and is used to determine whether to insert a new row or update an existing row in the table using the REPLACE INTO statement. See an example below:

CREATE TABLE employees (
employee_id INT,
employee_name VARCHAR(100),
employee_salary DECIMAL(10, 2),
employee_email VARCHAR(255)
);

-- This REPLACE INTO inserts a new row
REPLACE INTO employees (employee_id, employee_name, employee_salary, employee_email)
ON (employee_email)
VALUES (123, 'John Doe', 50000, 'john.doe@example.com');

-- This REPLACE INTO updates the inserted row
REPLACE INTO employees (employee_id, employee_name, employee_salary, employee_email)
ON (employee_email)
VALUES (123, 'John Doe', 60000, 'john.doe@example.com');

Distributed REPLACE INTO

REPLACE INTO support distributed execution in cluster environments. You can enable distributed REPLACE INTO by setting ENABLE_DISTRIBUTED_REPLACE_INTO to 1. This helps enhance data loading performance and scalability in cluster environments.

SET enable_distributed_replace_into = 1;

Examples

Example 1: Replace with Direct Values

This example replaces data with direct values:

CREATE TABLE employees(id INT, name VARCHAR, salary INT);

REPLACE INTO employees (id, name, salary) ON (id)
VALUES (1, 'John Doe', 50000);

SELECT * FROM Employees;
+------+----------+--------+
| id | name | salary |
+------+----------+--------+
| 1 | John Doe | 50000 |
+------+----------+--------+

Example 2: Replace with Query Results

This example replaces data with a query result:

CREATE TABLE employees(id INT, name VARCHAR, salary INT);

CREATE TABLE temp_employees(id INT, name VARCHAR, salary INT);

INSERT INTO temp_employees (id, name, salary) VALUES (1, 'John Doe', 60000);

REPLACE INTO employees (id, name, salary) ON (id)
SELECT id, name, salary FROM temp_employees WHERE id = 1;

SELECT * FROM Employees;
+------+----------+--------+
| id | name | salary |
+------+----------+--------+
| 1 | John Doe | 60000 |
+------+----------+--------+

Example 3: Replace with Staged Files

This example demonstrates how to replace existing data in a table with data from a staged file.

  1. Create a table called sample
CREATE TABLE sample
(
id INT,
city VARCHAR,
score INT,
country VARCHAR DEFAULT 'China'
);

INSERT INTO sample
(id, city, score)
VALUES
(1, 'Chengdu', 66);
  1. Set up an internal stage with sample data

Firstly, we create a stage named mystage. Then, we load sample data into this stage.

CREATE STAGE mystage;

COPY INTO @mystage
FROM
(
SELECT *
FROM
(
VALUES
(1, 'Chengdu', 80),
(3, 'Chongqing', 90),
(6, 'Hangzhou', 92),
(9, 'Hong Kong', 88)
)
)
FILE_FORMAT = (TYPE = PARQUET);
  1. Replace existing data using the staged Parquet file with REPLACE INTO
tip

You can specify the file format and various copy-related settings with the FILE_FORMAT and COPY_OPTIONS available in the COPY INTO command.

REPLACE INTO sample 
(id, city, score)
ON
(Id)
SELECT
$1, $2, $3
FROM
@mystage
(FILE_FORMAT => 'parquet');
  1. Verify the data replacement

Now, we can query the sample table to see the changes:

SELECT * FROM sample;

The results should be:

┌─────────────────────────────────────────────────────────────────────────┐
│ id │ city │ score │ country │
│ Nullable(Int32) │ Nullable(String) │ Nullable(Int32) │ Nullable(String)
├─────────────────┼──────────────────┼─────────────────┼──────────────────┤
1 │ Chengdu │ 80 │ China │
3 │ Chongqing │ 90 │ China │
6 │ Hangzhou │ 92 │ China │
9 │ Hong Kong │ 88 │ China │
└─────────────────────────────────────────────────────────────────────────┘