CREATE INVERTED INDEX
Introduced or updated: v1.2.405
INVERTED INDEX is an Enterprise Edition feature. Contact Databend Support for a license.
Creates a new inverted index in Databend.
Syntax
CREATE [ OR REPLACE ] INVERTED INDEX [IF NOT EXISTS] <index>
ON [<database>.]<table>( <column>[, <column> ...] )
[ <IndexOptions> ]
Parameter | Description |
---|---|
[ OR REPLACE ] | Optional parameter indicating that if the index already exists, it will be replaced. |
[ IF NOT EXISTS ] | Optional parameter indicating that the index will only be created if it does not already exist. |
<index> | The name of the inverted index to be created. |
[<database>.]<table> | The name of the database and table containing the columns for which the index will be created. |
<column> | The name of the column(s) to be included in the index. Multiple indexes can be created for the same table, but each column must be unique across indexes. |
<IndexOptions> | Optional index options specifying how the inverted index is built. |
IndexOptions
IndexOptions ::=
TOKENIZER = 'english' | 'chinese'
FILTERS = 'english_stop' | 'english_stemmer' | 'chinese_stop'
INDEX_RECORD = 'position' | 'basic' | 'freq'
-
TOKENIZER
specifies how text is segmented for indexing. It supportsenglish
(default) andchinese
tokenizers. -
FILTERS
defines rules for term filtering:- Multiple filters can be specified, separated by commas, e.g.,
FILTERS = 'english_stop,english_stemmer'
. - A lower case filter is added by default to convert words to lowercase letters.
- Multiple filters can be specified, separated by commas, e.g.,
FILTERS | Description |
---|---|
english_stop | Removes English stop words like "a", "an", "and" etc. |
english_stemmer | Maps different forms of the same word to one common word. For example, "walking" and "walked" will be mapped to "walk". |
chinese_stop | Removes Chinese stop words, currently only supports removal of Chinese punctuation marks. |
INDEX_RECORD
determines what is to be stored for the index data:
INDEX_RECORD | Default? | Description |
---|---|---|
position | Yes | Stores DocId, term frequency, and positions, occupies the most space, offers better scoring, and supports phrase terms. |
basic | No | Stores only the DocId, occupies minimal space, but doesn't support phrase searches like "brown fox". |
freq | No | Stores DocId and term frequency, occupies medium space, doesn't support phrase terms, but may provide better scores. |
Examples
-- Create an inverted index for the 'comment_text' column in the table 'user_comments'
CREATE INVERTED INDEX user_comments_idx ON user_comments(comment_text);
-- Create an inverted index with a Chinese tokenizer
-- If no tokenizer is specified, the default is English
-- Filters are `english_stop`, `english_stemmer` and `chinese_stop`
-- Index_record in `basic`.
CREATE INVERTED INDEX product_reviews_idx ON product_reviews(review_text) TOKENIZER = 'chinese' FILTERS = 'english_stop,english_stemmer,chinese_stop' INDEX_RECORD='basic';
-- Create an inverted index for the 'comment_title' and 'comment_body' columns in the table 'user_comments'
-- The output of SHOW CREATE TABLE includes information about the created inverted index
CREATE INVERTED INDEX customer_feedback_idx ON customer_feedback(comment_title, comment_body);
SHOW CREATE TABLE customer_feedback;
┌─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ Table │ Create Table │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ customer_feedback │ CREATE TABLE customer_feedback (\n comment_title VARCHAR NULL,\n comment_body VARCHAR NULL,\n SYNC INVERTED INDEX customer_feedback_idx (comment_title, comment_body)\n) ENGINE=FUSE │
└───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── ────────────────────────────────────────────────────────────────────────────────────┘